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Rigid rod anchored to infinite membrane
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We investigate the shape deformation of an infinite membrane anchored by a rigid rod. The density
profile of the rod is calculated by the self-consistent-field theory and the shape of the membrane is
predicted by the Helfrich membrane elasticity theory �W. Helfrich, Z. Naturforsch. 28c, 693
�1973��. It is found that the membrane bends away from the rigid rod when the interaction between
the rod and the membrane is repulsive or weakly attractive �adsorption�. However, the pulled height
of the membrane at first increases and then decreases with the increase of the adsorption strength.
Compared to a Gaussian chain with the same length, the rigid rod covers much larger area of the
membrane, whereas exerts less local entropic pressure on the membrane. An evident gap is found
between the membrane and the rigid rod because the membrane’s curvature has to be continuous.
These behaviors are compared with that of the flexible-polymer-anchored membranes studied by
previous Monte Carlo simulations and theoretical analysis. It is straightforward to extend this
method to more complicated and real biological systems, such as infinite membrane/multiple chains,
protein inclusion, or systems with phase separation. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2008248�
I. INTRODUCTION

Biological and biomimetic membranes, such as the
plasma membrane of cells, consist of a lipid bilayer, mem-
brane proteins, glycolipids, and various types of
macromolecules.1 The proteins can be classified into two
types: transmembrane proteins and peripheral proteins.
Transmembrane proteins are rigid inclusions in the mem-
branes. Peripheral proteins, such as caveolin, are less inva-
sive biologically, and they can be separated from the mem-
brane more easily than transmembrane proteins. Many of
these protein/membrane compounds carry out important bio-
logical tasks such as signal transduction, pore or ion channel
formation, and cytoskeleton binding, probably involving in
endocytosis and exocytosis processes.2–4

The interactions of peripheral proteins with lipid mem-
branes that lead to protein binding are extraordinary complex
and not completely understood yet.5 A prominent role is
played by hydrophobic forces, which are significantly influ-
enced by the chain stiffness, topological architectures typical
of these proteins. To model the effect of proteins on the
membrane, polymer/membrane compounds have been care-
fully investigated.6,7 When polymers are anchored or brought
to a membrane on one side, the conformational fluctuations
of the polymers are reduced due to the restriction of available
space, subsequently inducing membrane shape deformation.6

A number of theoretical studies have devoted to analyze
the effect of polymer chains anchored on fluid membranes.
The inhomogeneity of the local bending rigidity and sponta-
neous curvature of a homogeneous membrane would be in-
duced by the chain segments floating on the membrane.6–9
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Furthermore, the configurational entropy of the polymer
would be decreased due to the confined space, which in turn
exerts an inhomogeneous pressure patch on the membrane,
giving rise to a conelike shape close to the anchor.10–12 It has
been found that with nonzero anchoring distance the mem-
brane has the possibility of bending away from the polymer
in the case of weak adsorption, while it would bend towards
the polymer on condition of sufficiently strong
adsorption.10,13 In contrast, as the adsorption strength in-
creases, the membrane would not change the sign of curva-
ture without anchoring distance.10

Up to now, most of the studies have assumed that the
grafted polymer chains are flexible and the influence of the
rigidity of the chains is seldom considered.13 In this paper we
will use a combined self-consistent-field theory �SCFT� and
Helfrich membrane elasticity theory to investigate the rigid-
rod-anchored infinite, flat membrane system. We have ap-
plied a similar method, i.e., combining the membrane curva-
ture theory for closed vesicles and SCFT for polymers, to
predict the shape changes of the flexible polymer-chain-
anchored vesicles.14 Because the rod is rigid and the mem-
brane is curved, a finite gap exists between the membrane
and the rigid rod. Furthermore, the end-to-end distance of a
rigid rod is much larger than that of a flexible polymer with
the same chain length, thereby it is naturally expected that
the membrane will exhibit different bending behaviors. The
tension and bending rigidity of the membrane also play im-
portant roles in the deformation behavior.

The paper is organized as follows. In Sec. II, a detailed
description of our method, which combines SCFT of the rod
and curvature elasticity theory of the membrane, is pre-
sented. In Sec. III we present the results and discuss the
influences of the adsorption of the rigid rod to the membrane,

the rod length, as well as the surface tension and bending
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rigidity of the membrane. The results are compared with that
of a polymer-anchored membrane whereas possible. Finally
a brief conclusion is given in Sec. IV.

II. MODEL

We consider a rod/membrane system in which the rod is
rigid and consists of Np segments. One end of the rigid rod is
anchored to the infinite, flat membrane in a solution with ns

solvent molecules, as illustrated in Fig. 1. The diameter of
the rod is taken to be the unit length b. For simplicity, we
define the segment size of the rod b equal to the size of the
solvent. Note that the statistical segment size plays the same
role as the Kuhn length of a Gaussian chain. The membrane
usually makes up of amphiphilic short chains and the lateral
unit length of the membrane is also reasonably assumed to
be b. With these assumptions the density �0 of the rod, mem-
brane, and solvents are equal, i.e., �0=1/b3. We also assume
that the membrane is impenetrable to the rigid rod but pen-
etrable to the solvent molecules. Thus no interaction between
the solvent and the membrane is introduced in the present
model.

We now define the microscopic order parameters of the
solvents and the rod. The dimensionless solvent density op-
erator is defined as �̂s�r�= �1/�0��i=1

ns ��r−Rs
i�, and the di-

mensionless rod density operator as �̂p�r�= �1/�0��0
Npd���r

−Rp����= �1/�0��dn̂�0
Npd���r−Rm�0,0�−�n̂�. Rs

i and Rp���
represent the spatial position of the solvent i and the segment
� of the rigid rod, respectively. Rm�u ,v� denotes the position
of the membrane, and u ,v are curvilinear coordinates in the
membrane surface. The unit vector n̂= n̂�� ,��, where azi-
muth �� �0,2�� and zenith �� �0,��, denotes that the rod
can freely gyrate around Rm�0,0� �it however cannot pen-
etrate the membrane�, where Rm�0,0� is the anchoring posi-

FIG. 1. Schematic illustration of one end of a rigid rod with length Npb
anchored on an infinite membrane: �a� three-dimensional �3D� illustration
and �b� coordinate system. The membrane height at r� is h�r��, with r� the
coordinate in the base plane. In a system with axis symmetry, r� reduces to
the distance to the origin r.
tion of the rigid rod, as shown in Fig. 1�b�.
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The interaction potentials can be written as �V̂ps

= �� /�0��i=1
ns �0

Npd���Rp���−Rs
i�=��0�dr�̂p�r��̂s�r� for

polymer/solvent and �V̂pm=	b�dA�0
Npd���Rp���

−Rm�u ,v��=	�0b�dA�̂p�Rm�u ,v�� for polymer/membrane,
where �=1/kBT and � and 	 are the interaction parameters
of polymer/solvent and polymer/membrane, respectively. dA
is the surface element.

The thickness fluctuations can be ignored provided that
the thickness d��b� of the membrane bilayer is small com-
pared to other relevant length scales of the problem �i.e., d

Npb length of the rigid rod�. Then the thermodynamic
property of the fluid membrane can be coarse-grained and
well described by the Helfrich Hamiltonian. The conforma-
tion of the membrane can be simply described by the Monge
gauge, in which Rm= �r� ,h�r���, where the surface height
h�r�� is defined with respect to the base plane h�r��
=const and r� is the coordinate in the base plane, as shown
in Fig. 1�b�. Assuming a nearly flat membrane of fixed to-
pology �in which the Gaussian curvature can be ignored�, the
Hamiltonian of the membrane is written as15

�Hm
0 �Rm�u,v�� =

1

2
� dr������h�r���2

+ ����
2 h�r���2� , �1�

where � is the bending rigidity of the fluid membrane �in
units of kBT� and � is the surface tension. The Laplacian ��

2 h
equals to the sum of the principal curvatures of the infinite
membrane, while 1

2 ���h�r���2 gives the increase of mem-
brane area per unit projected area due to the membrane tilt
��h�r��. Since Eq. �1� is only valid for linear perturbations
of the planar membrane, to avoid attacking the nonlinear
region in the numerical calculation, the parameters used in
what follows ensure that the maximum values of either
	��h�r��	 or 	��

2 h	 are on the order of 0.01. The bending
rigidity � of the membrane is assumed independent of the
rod anchoring. Early studies by Hiergeist and Lipowsky on
polymer-decorated membranes pointed out that a polymer
can modify �.16 By using a small curvature expansion, the
authors derived the effective value of �, showing that the
correction was much smaller than the bare value of � in the
absence of polymers. In the present model, as will be shown
later, an extra �entropic� pressure term due to the spatial con-
finement of the anchored rod by the impenetrable membrane
is obtained in the equation that determines the shape of the
membrane. Therefore, an effective bending rigidity �eff is
obtained by combining the bare value � with the entropic
pressure.

The present rigid-rod model is a crude approximation for
a stiff polymer, in which the bending energy is given by17,18

Hp
0�Rp���� =

l0

2
�

0

Np

d�
d2Rp���
d�2 �2

, �2�

where d2Rp��� /d�2 is the local curvature of the chain and l0

is the persistence length measuring the correlations between
tangent vectors at different sites of the chain. The rigid-rod
model is recovered as a special case for l0→
 and

2 2
d Rp��� /d� →0. Therefore, it is reasonable to assume
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Hp
0�Rp����=const in the present model, which leads to a great

simplification of numerical calculations.
Then the partition function of such system can be written

in the following form:

� = N 1

ns!
� �

i=1

i=ns

DRs
i � DRp

�exp
− �Hp
0�Rp����� � DRm�u,v�

�exp
− �Hm
0 �Rm�u,v���exp
− �V̂ps − �V̂pm���1 − �̂s

− �̂p���Rm�0,0� − Rp�0���
�0�
r�Rm

↓ �u,v�
dr�̂p� , �3�

where N is a constant, �=1/kBT, and r�Rm
↓ �u ,v� or

r�Rm
↑ �u ,v� represents that the position r is below or above

the infinite membrane. �DR denotes a set of path integrals
over all possible conformations. Furthermore, three Dirac �
functions are introduced: the first one realizes the incom-
pressibility condition, the second one means that the end of
the rod is anchored to Rm�0,0�, and the third one assures that
the rod is always above the membrane.

Following the standard procedure of SCFT,19 a func-
tional integral 1=�D�p���p− �̂p� is inserted into Eq. �3�,
which permits the representation of the operator �̂p by the
function �p. The same is done for �̂s, and then the � func-
tionals are replaced by the standard integral representation.
This transforms the partition function into

� =� DRm� D�p� D�p� D�s� D�s

�� D�� D� exp
− �F� , �4�

where the functional F is

�0
−1�F = − �0

−1 ln�Qp
�p��0� − ns�0
−1 ln�Qs
�s��0�

−� dr�p�p −� dr�s�s −� dr��1 − �p − �s�

+ ��
r�Rm

↓
dr�p + 	�

r=Rm

dr�p + �� dr�p�s

+
1

2
�0

−1� dr������h�r���2 + ����
2 h�r���2� ,

�5�

where �p and �s are conjugate potentials of the density field
�p and �s, respectively. A field � is introduced to enforce the
incompressible constraint and � ensures that the membrane is
impenetrable to the rigid rod. Qp
�p� denotes the partition
function of the rigid rod in the potential field �p with one
end anchored at point Rm�0,0� and Qs
�s� is the partition
function of solvent molecules in the potential field �s. The
two partition functions take the following forms, respec-
tively:

Q 
� � = dr exp
− � �r�� , �6�
s s � s
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Qp
�p� =� DRp exp�− �
0

Np

d���Rp�����
���Rp�0� − Rm�0,0�� . �7�

The partition function Qp for the rigid rod could be calcu-
lated by summing up the exponential of the self-consistent
potential � from the first segment to the last with all possible
orientations n̂.

Based on the mean-field approximation, minimizing the
functional in Eq. �5� with respect to �, �p, �p, �s, �s, and �,
one obtains the following self-consistent equations for the
rod and solvents:

�p�r� = �	 + ��s�r� + ��r� , r = Rm,

� + ��s�r� + ��r� , r � Rm
↓ ,

��s�r� + ��r� , r � Rm
↑ ,
� �8�

�s�r� = ��p�r� + ��r� , �9�

�p�r� =
1

�0Qp
exp�− �

0

Np

d��p�Rp�������r − Rp���� ,

�10�

�s�r� =
ns

�0Qs
exp
− �s�r�� , �11�

1 = �p�r� + �s�r� , �12�

0 = �0�
r�Rm

↓
dr�p�r� . �13�

Further performing the variation of the functional F with
respect to the shape of the membrane,14 one arrives at the
equilibrium shape equation for the infinite membrane,

���p�Rm� + 	bn · � �p�Rm�� − �	b�p�Rm� + ��0
−1���

2 h

+ ��0
−1��

4 h = 0, �14�

where n · ��p�Rm� denotes the concentration gradient of the
rigid rod along the normal direction on the membrane. The
first-order derivative ���h� is set to be zero on the boundary
and the anchored position keeps constant to achieve the
shape of the infinite membrane. The extra pressure ���p�Rm��
originates from the reduction of the rod configuration en-
tropy due to the spatial confinement by the impenetrable
membrane. The extra tensile stress �	b�p�Rm�� comes from
the adsorption of the rod segments onto the membrane.
Moreover, the adsorption of the rod onto the membrane also
results in additional pressure 	bn · ��p�Rm�, which also re-
flects the membrane and tends to contact more rod segments
if the interaction is favorable, i.e., 	�0.

The rotation of the rod is much faster than the deforma-
tion of the membrane, since the rotational correlation time
for small membrane proteins is usually around 10−8 s while
the typical time scale of the shape fluctuations for vesicles at
100-nm scale is about 10−4 s.20,21 Therefore, the free end of
the rod only touches the membrane transiently and the touch-

ing point will be randomly distributed around the grafting
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point in Fig. 1. After ensemble averaging, effectively the
system can be assumed to be axis symmetric, which greatly
simplifies the calculation. We solve all the self-consistent
equations and the shape Eq. �14� in the axis-symmetric co-
ordinate system, in which r� reduces to a scalar r, as shown
in Fig. 1. The box size used to calculate the rod density is
Lr=12 and Lh=24 with �h=0.1 and �r=0.1. We set ��
=0.1 and b=0.1 and also fix �=3. �We found that this value
of � is high enough to ensure no rod segments appearing
below the �impenetrable� membrane.� In order to solve the
self-consistent equations �Eqs. �8�–�14��, we first assume that
the initial shape of the membrane is flat. We solve the self-
consistent equations with no slope boundary and obtain �p by
using the real-space algorithm of Drolet and Fredrickson.22

Then the solved �p can be inserted into the shape equation
�Eq. �14�� to obtain the new membrane shape, in which the
fourth-order differential equation is solved by Gaussian
elimination with partial pivoting,23 as well as with the
boundary condition of �� /�r�h�r=
�=0 and h�0�=0. We
again solve the self-consistent equations �Eqs. �8�–�14�� to
obtain the �p with this new shape of the infinite membrane as
well as the changed potentials �. This procedure is iterated
until the convergence condition has been reached, in which
the difference of the boundary height satisfies �h�r=
�
=10−4 between two successive iterations. With this condi-
tion, the equilibrium shape of the membrane and the configu-
ration of the rigid rod are finally obtained. To avoid the finite
edge effect, the lateral size of the infinite membrane is cho-
sen more than 50Npb.

III. RESULTS AND DISCUSSION

Figure 2 depicts the shape of the rod-anchored mem-
brane with 	=0, i.e., no adsorption between the membrane
and the rigid rod. Close to the anchoring, the membrane
shows conelike shape and bends away from the rod. Since
the length of the rigid rod, Rp=Npb, is much larger than the
coil size of a Gaussian chain with the same chain length
�Rp=b�Np�, the “corona” of the rod formed above the mem-
brane is much larger than that of the corresponding Gaussian
chain. Therefore more free space for the rigid rod is avail-
able, which would provide more opportunity of the rod to
exert entropic pressure on the membrane. Polymer chains,
however, exert largely an inhomogeneous pressure on the
neighborhood and on the anchoring position, resulting from
highly local conformation fluctuations of the polymers ac-
cording to a previous scaling theory.7 Of course, other dis-
tinguished differences also exist between the anchoring of
the Gaussian chain and rigid rod. In fact, in the case of rigid
rod anchoring, not all rod segments could exert entropic
pressure on the membrane, and a gap exists between the
membrane and the rigid rod at the equilibrium state because
of the rigidity of the rod and the continuity of the membrane
curvature, as shown in Fig. 2�a�. However, the behaviors of
the membrane bending away from the anchored Gaussian
chain or rigid rod are in agreement with the results of previ-
ous Monte Carlo simulations and analytical calculations.10

The density of the rod, represented by the gray color, is

gradually attenuated from the anchoring position. The densi-
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ties of the rod along the vertical �r=0� and horizontal �h
=0� directions with 	=0 are shown in Fig. 2�b�. Since the
rod is freely rotating about the anchoring above the mem-
brane, the density profiles along these two directions are al-
most identical and thus only one profile is seen. In both
cases, the densities drop suddenly from the anchoring posi-
tion and then decay smoothly further away. Plotting in the
logarithmic scale, as shown in the inset of Fig. 2�b�, these
densities are seen to decay gradually with an exponent of −2,
which can be explained as follows: Since the rigid rod ro-
tates freely, its density distribution obeys a simple scaling
�p�r ,h��b2 /2��r2+h2�, where r2+h2�Np

2 and r ,h repre-
sents the space position in the cylindrical coordinate.

As shown in the left inset of Fig. 2�a�, the membrane
height decreases algebrically close to the anchoring position,
but exponentially decays far away from it. A similar behavior
has also been predicted in a polymer-anchored membrane by

11,12

FIG. 2. Shapes of the infinite membrane anchored by a rigid rod with 	
=0, �=0.02, Np=80, �=0.001, and �=0. �a� The density of the rigid rod is
drawn in gray with the logarithmic scale. The shape of the infinite mem-
brane is represented by solid curves. Note the gap between the membrane
and the rod. In the left inset, the shape of the whole membrane is drawn; in
the right inset, the shape of the membrane nearby the anchoring point is
shown in the logarithmic scale. �b� The density profile of the rod along the
vertical �r=0� and horizontal �h=0� directions. In the inset, the same plot is
drawn in logarithmic scale.
means of a perturbation calculation. Considering that the
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entropic pressure, which is in proportion to the density of the
rod segments on the membrane, is the main driving force of
the membrane deformation and ignoring the contribution of
the surface tension �which is safe since the � term is much
greater than the � term for the parameters in Fig. 2� one can
simplify Eq. �14� into

��0
−1��

4 h�r�� � − ��p�Rm� � −
�b2

2�r2 . �15�

Near the anchoring the solution of the above equation has an
asymptotic form:

h�r��r→�r −
�

2�b�

 r2�ln r�2

8
−

r2 ln r

4
+

3r2

16
� . �16�

When r→�r
1, keeping only the leading term in the right-
hand side of the above equation and taking the logarithm of
both sides, we arrive at

log�− h�r�� = c0 + 2 log r + 2 log 	ln r	 , �17�

where c0=log � /16�b�. When r
1, the last term is negli-
gible when compared to the second term, so log�−h�r��
�2 log r follows, which is in agreement with the results
plotted in the right inset of Fig. 2�a�.

In Fig. 3, the shapes of the rod-anchored membrane are
presented for different adsorption parameters 	 between the
membrane and rigid rod. For a clear comparison, all the
membranes are vertically moved so that the membrane
height at the boundary is zero. As shown in Fig. 3, all the
membranes bend away from the rigid rod, and significant
deformation only occurs in a range of the order of the rod
length. Clearly, with the increase of 			 �	 goes more nega-
tive� the height of the membranes at the anchoring position
at first increases and then decreases, as shown in Fig. 3. To
be more explicit, the height of the membrane, defined as
�H=h�r=0�−h�r→
�, is plotted as a function of 	 in Fig.
4. Simple sketches are drawn in the top of Fig. 4�a� to illus-
trate the membrane deformation as 	 changes. Three quali-
tatively different regions are observed. In region I, where
	�0 �the interaction is repulsive�, the pulled height goes up
as the interaction changes from repulsion to weak adsorption.
In region II, the pulled height increases slowly with the de-
crease of 	, up to certain critical value, it reaches a maxi-

FIG. 3. Shape of the infinite membrane anchored by the rigid rod for dif-
ferent adsorption strengths 	 with Np=40, �=1, �=0.01, and �=0.
mum and then drops down. For high enough adsorption
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strength, the pulled height will decrease further, and the
membrane will become flat again in the last region �III�. The
competition between the adsorption potential and the mem-
brane curvature energy determines the degree of bending
away of the membrane. If the contribution of the bending
rigidity is far larger and can suppress that of the interaction
potential, the membrane will remain almost flat. Otherwise,
the membrane chooses to sacrifice its curvature energy and
will be explicitly pulled out. As shown in Figs. 3 and 4�a�,
the membrane has to bend further away from the rigid rod
with the decrease of 	 in region I. However, further decreas-
ing 	 results in a decrease of the pulled height in region II.
The reason is in the case that the adsorption parameter 	
becomes strong enough, if all the segments of the rigid rod
could cover the membrane, then the adsorption potential is
the largest, which is favorable; whereas the bending energy
of the membrane is the least in the flat state. Therefore the
membrane must become flat again with such strong enough
adsorption of the rod, just as the trend shown in Fig. 4. This
trend can be deduced by qualitatively analyzing the shape
equation �Eq. �14��. The term n · ���Rm� is always positive,
with a negative 	, it counteracts the inhomogeneous entropic
pressure term ��p�Rm� inflicted by the rigid rod, giving rise
to a gradual decrease of the membrane height. For this rea-
son, the pulled height of the membrane does not monotoni-
cally increase with the adsorption parameter. The role of the

FIG. 4. �a� Plot of the pulled height of the membrane ��H=h�0�−h�r
→
�� vs adsorption strengths for different bending rigidities �=0.2, 1, and
10, other parameters are the same as in Fig. 3. �b� Plot of the value of 	 at
which �H attains its maximum vs bending rigidity.
bending rigidity � is shown in Fig. 4�b�, in which the value
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of 	 at which �H in Fig. 4�a� attains its maximum is plotted.
This maximum decreases with the increase of � and disap-
pears when � is high enough �in this case when ��10�. It is
interesting to compare this phenomenon to a fixed size mem-
brane adsorbing flexible chains, in which from weak to
strong adsorption, as proposed by Kim and Sung, the sign of
the membrane curvature will change.13 The polymer seg-
ments can uniformly distribute on the membrane and form a
lot of loops without grafting. However, for the rigid rod, the
loop conformation is not possible and the influence of the
curvature at the boundary has to be taken into account. Thus
the infinite membrane will be prone to be flat and not change
the sign of the membrane curvature even in the strong ad-
sorption regime.

The shape of the membranes anchored by the rigid rod
with different lengths is plotted in Fig. 5. It is seen that all
the membranes bend further away from the rigid rod with the
increase of the rod length. Note that the coverage on the
membrane would monotonically increase with the length of
the rigid rod. Therefore longer rods would have more seg-
ments to exert inhomogeneous pressure on the membrane,
this implies that the membrane would bend further away
from longer rods, which is confirmed in Fig. 5 for both 	
=0 and 	=−0.3. However, the pulled height is not propor-
tional to the chain length and the pulling effect of the rod
becomes much less significant for longer rods. This is quan-

FIG. 5. Shape of the rod-anchored membrane for different rod lengths Np

with �=1, �=0.01, and �=0. In the inset the pulled height �H is plotted vs
the chain length. �a� 	=0 and �b� 	=−0.3.
titatively described in the insets of Figs. 5�a� and 5�b�, in
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which the �maximum� pulled height of the membrane h�0�
against the rod length Np is plotted. The pulled height ap-
proaches a finite limit when Np�100 for both 	=0 and 	
=−0.3. The reason is that a finite gap exists between the
membrane and rigid rod, especially for a longer rod. Thus
not all the segments of the rigid rod can effectively exert
entropic pressure that causes bending of the membrane.
Moreover, for the same adsorption strength, a similar effect
has been observed, irrespective of the flexibility of the an-
choring chains.14 The membrane is already full of chain seg-
ments at this specific state and is not able to “eat” segments
any more.

Figure 6 illustrates the effect of the membrane surface
tension. The membrane bends away from the rigid rod for all
positive tensions with 	=0. For the zero surface tension, �

=0, the pulled height is the highest and decays more slowly
from the anchoring position. In contrast, for high �, the
pulled height is much lower and decays much more rapidly
away from the anchoring. For a small fluctuation inflicted on
the infinite membrane: when ��0, the surface tension deter-
mines the nature of the long-wavelength fluctuations, �h2�
�kBT / �2���ln�LB�; when � is close to zero, the bending
rigidity determines the nature of the fluctuations, �h2�
�kBT / �2���LB

2 , where LB is the length of the base plane.15

Then, the pulled height for ��0 will decay more rapidly
than that of �=0, as well as the pulled height will be higher
with smaller surface tension. Kohyama also proposed that
the flat membrane can exhibit an undulating shape, which
significantly decreases the surface tension.24

Recent elegant experiments demonstrated that the con-
trol of the surface tension may be achieved via micropipette
aspiration, facilitating studies of the effect of tension on
membrane elasticity and water permeability.25,26 With these
experiments the surface tension ��� parameter of the mem-
branes was estimated to be 0.01–0.1 pN/nm, which is about
0.0025kBT /nm2–0.025kBT /nm2, thus the magnitude of the
surface tension used in our numerical calculation agrees

FIG. 6. Shape of the rod-anchored membrane for different surface tensions
� with Np=40, �=1, 	=0, and �=0.
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fairly with the parameter obtained from the experiments. The
anchoring rigid rod exerts not only the inhomogeneous en-
tropic pressure but also the inhomogeneous surface tension
on the membrane with interaction potential between the
membrane and rigid rod, according to the equilibrium shape
equation �Eq. �14��. Furthermore, the surface tension would
be decreased to some extent because of the adsorption inter-
action �since 	�0� and increased with the repulsion be-
tween the rod and membrane. In this case, the membrane is
softened with rod adsorption and thereby the pulled height
will increase. The effect of the anchoring rigid rod will be
involved in larger area of the membrane with lower surface
tensions, that is, the inflicted pressure field will be exten-
sively diffused far away from the anchoring position. How-
ever, the effective range of the anchoring rod is within the
distance of several rod lengths with positive surface tension;
the pulled height is not very high and the membrane falls
rapidly to flat, as shown in Fig. 6. Therefore, undulations of
the membrane induced by positive tension of the membrane
itself and extra tension because the external anchoring struc-
tures are so small and were ignored in most previous theo-
retical studies.

Rigid rods such as cytoskeleton anchoring and inclusion
increase more or less the bending rigidity of the membrane,
which inevitably restrains its thermal fluctuations, as shown
by previous experiments.27,28 For biological membranes pri-
marily composed of a bilayer of phospholipids, the bending
rigidity is typically �=10�40kBT.25 The effect of the bend-
ing rigidity on the membrane for 	=0 and 	=−0.3 is shown
in Fig. 7. The membranes bend further away from the rigid
rod as the bending rigidity decreases from �=10 to �=0.5,
which means the membranes with large bending rigidity can
resist extra deformation. In the inset of Fig. 7�a� the pulled
height is plotted as a function of the bending rigidity of the
membrane, in which a distinct linear behavior is observed
with a slope of −1, which is exactly what Eq. �16� has ex-
pected. We note that, for flexible polymer anchoring, a simi-
lar argument predicted the pulled height behaving like h�r�
�r→�r− �kBT /���r /2��.11 We therefore also performed a cal-
culation for a flexible chain anchoring and obtained a slope
of −0.9, which was slightly different from the rod case �−1�.
For 	�0, the equilibrium shape or the pulled height cannot
be described by a single scaling law, it is controlled by the
membrane curvature, contact area between the membrane
and rod, as well as the configuration entropy loss of the rod.
Figure 7�b� shows an example with 	=−0.3, in which �H
=h�0�−h�
� decreases with the increase of �, but is slower
as compared to the case with 	=0. The reason is that strong
adsorption �	�0� tends to counteract the bending, which
is reflected in Eq. �14� �compare the second and third
terms�.

The interaction � between the rod and the solvent is not
explicitly included in the Eq. �14�. However, the quality of
the solvent could potentially affect the shape of the mem-
brane through its interaction with the rod. But this effect is
not significant for the rod-grafted membrane since the rod is
rigid and the distribution of the rod segment is almost not
influenced as long as no phase separation between the rod

and the solvent occurs, which needs a high positive � value

Downloaded 25 Oct 2005 to 202.120.224.18. Redistribution subject to
and in reality ��0 because proteins always have hydrophilic
groups interacting with the water solvent. Figure 8 shows the
the membrane shape with different � values for �=1 and
Np=40. Indeed increasing � causes a slight decrease of the
pulled height �H because in a bad solvent the rod prefers to
stay close to the membrane, which suppresses the pulling of
the membrane, but this effect is not significant as compared
to that of other parameters.

FIG. 7. Shape of the rod-anchored membrane for different bending rigidities
� with Np=40, �=0.01, and �=0. In the inset, the pulled height �H as a
function of the bending rigidity is drawn in the logarithmic scale. �a� 	=0
and �b� 	=−0.3.

FIG. 8. Shape of the rod-anchored membrane for different � with Np=40,
�=0.01, and 	=0. In the inset, the pulled height �H as a function of � is

drawn.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



074906-8 Guo et al. J. Chem. Phys. 123, 074906 �2005�
IV. CONCLUSION

We have investigated the system of a rigid rod anchored
to an infinite membrane by combining the SCFT for the rigid
rod and membrane curvature theory. It is found that the
membrane bends away from the rigid rod when the interac-
tion between the rod and the membrane is repulsive or weak
attractive �adsorption�. However, the pulled height of the
membrane at first increases and then decreases with the in-
crease of the adsorption strength. An evident gap is found
between the membrane and the rigid rod because the mem-
brane’s curvature has to be continuous. Compared to a
Gaussian chain with the same length, the rigid rod covers
much larger area of the membrane, therefore exerts less local
entropic pressure on the membrane, which clearly affects the
bending extent of the membrane even in zero adsorption
strength. Conformations of both the rigid rod and Gaussian
chain realize a transition from “mushroom” to “pancake”
with the increase of the adsorption strength. Furthermore, the
effect of the surface tension and bending rigidity on the
membrane deformation are explicitly investigated. The posi-
tive tension controls the scope of the membrane that is ap-
parently deformed. However, it does significantly influence
the height of the membrane. High bending rigidity of the
membrane can resist the pulling effect of the anchoring rod.
The physical results presented here can provide valuable in-
sights to various biological processes.
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